
Read-Copy Update in a
Garbage Collected Environment

By Harshal Sheth, Aashish Welling, and Nihar Sheth

Overview

● Read-copy update (RCU)
○ Synchronization mechanism used in the Linux kernel
○ Mainly used in lower level languages such as C or C++

● Explored the viability of RCU in a garbage collected
language: Go

● Go RCU provides similar performance to C++ RCU
● Code simpler and less error-prone in Go RCU

Outline

● Problem
● RCU Background
● Experiment Design
● Results
● Conclusions
● Future Work
● Acknowledgements

Introduction

● Clock speeds are no longer increasing exponentially

http://www.extremetech.com/wp-content/uploads/2012/02/CPU-Scaling.jpg

Introduction

● Clock speeds are no longer increasing exponentially
● Computers have more cores
● Parallelization is becoming increasingly important

https://cnet3.cbsistatic.com/hub/i/2011/09/13/97506276-fdb9-11e2-8c7c-d4ae52e62bcc/21196cc0e9bf31954c21004a3c1ee115/inside_intel_sandy_bridge_quad_core_processor.jpg

Unprotected Data Access: Initial List

Unprotected Data Access: Write Starts

Unprotected Data Access: Read Occurs

● The reader has read a corrupted value from the list
● This could the program to crash

Unprotected Data Access: Write Finishes

Synchronizing Parallel Processes

● Multithreaded programs require synchronization
● Many different mechanisms to achieve such

synchronization

Read-Write Mutexes

● Mutexes are the conventional method of synchronization
● “Locks” to prevent unsafe concurrent access to memory
● Writing and reading threads cannot operate concurrently

Write Lock

Read Lock

Problem: Locks Limit Scalability

● Ideally, performance
should increase linearly
with the number of cores

● If there is high contention,
threads are essentially
serialized

From Paul McKenney’s dissertation

Read-Copy Update

Basic RCU Properties

● Prevents data corruption
● Never blocks readers
● Writers are still serialized and have higher overhead
● Good for high reading thread to writing thread ratios

○ This happens a lot in the Linux kernel

RCU Use in Linux Kernel

From http://www.rdrop.com/~paulmck/RCU/linuxusage/linux-RCU.png

● Used commonly in
Linux kernel and
normally
implemented in C

● Linux is used
everywhere
○ Android
○ Servers
○ etc.

Example: Initial Linked List

Example: Copy Element

Example: Update List Atomically

Example: All Previous Readers Finish

Example: Free Old Element

● Quiescent state: any time period during which a thread is
not reading

● Grace period: time it takes for all threads to go through at
least one quiescent state

When Can We Free Memory?

http://lwn.net/Articles/323929/

RCU in the Linux Kernel

● Linux kernel written in C
● No garbage collector in C

○ Old copies need to be manually freed
○ Need to wait until a grace period has passed until freeing
○ Difficulty of implementation leads to bugs
○ For example, a recent Linux kernel bug (#102291) dealt with

RCU accidentally taking a write lock during a read-side
critical section
■ Avoiding bugs is very important in widely used systems

● “RCU is a poor man’s garbage collector”
 - Paul E. McKenney, Inventor of RCU

Our Idea: RCU in a Garbage Collected Language

● Why make a “poor man’s garbage collector” when a full
garbage collector is available?

● Garbage collection makes usage significantly easier
○ Garbage collector automatically decides when to free

memory - no need to keep track of grace periods manually!
○ Bug 102291 would be avoided in GC environment

● Decided to use Go
○ Designed by Google

Why Go?

● For system-level programming
○ Could be used to write a kernel

● Good garbage collector
○ Is it good enough?

Experiment Design

Goals

● Is RCU in a garbage collected language a viable option?
a. Is it easier to implement and/or use?
b. Does it provide performance benefits similar to RCU in

manual memory management languages?

Our Approach

● Implemented RCU in Go
● Compared amount of code that had to be written
● Compared RCU performance in Go to performance in C++

Benchmark Setup

We vary the number of operations that are writes. The % writes
is the mix. We used mixes up to 30%.

Results

Go RCU is Indeed Simpler

API Function C++ Necessary Go Necessary

rcu_read_lock() Yes No

rcu_read_unlock() Yes No

synchronize_rcu() Yes No

call_rcu() Yes No

rcu_assign_pointer() Yes No

rcu_dereference() Yes No

● Programmers are likely to write fewer bugs since it is
simpler

Performance of C++ RCU vs. Go RCU

Garbage Collection Counts

Factoring Out the Programming Language

● Benchmark has RCU portions and non-RCU portions
○ Need to focus on RCU portion

Evaluating RCU

Benchmarked each implementation with same test parameters

Speedups over RW Mutex

Conclusions

Conclusions

● RCU in a garbage collected environment is promising
● Performance improvement vs. RW mutex is similar if not

better than improvement in C++
● Don’t need to worry about freeing old copies because of

garbage collector
○ Many functions simply not necessary
○ Fewer opportunities for bugs

Future Work

● Integrate Go RCU into an actual application (i.e. cache) to
see its real-world performance

● Use Go RCU inside an OS kernel to see how it would
perform in kernel space

Acknowledgements

We would like to thank:
● Our mentor Cody Cutler for his guidance and insight
● Prof. Frans Kaashoek for suggesting this project
● Our parents for their constant support and encouragement
● The MIT PRIMES program for making this research possible

